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1. INTRODUCTION 

The Pythagorean triangles, or triples as some call them, are right angled 
triangles whose sides have whole numbers a, b, c, as length, so that 

a2 + b” = c2. (1) 

This equation, when generalized to exponent n instead of 2, has given us the 
enormous stimulus and torture of Fermat’s Last Theorem. 

Volumes have been written about these triangles from the number theo- 
retic point of view and are still being written. 

Equation (1) led to the study of sums of squares which are squares. This 
led to the definition of Pythagorean fields, in which every sum of squares is a 
square, and the definition of the Pythagorean number P(F) of a field F, i.e. 
the smallest positive integer n such that every element which is a sum of 
squares in the field is a sum of n squares. 

All of the Pythagorean triples are known to us. They are given by the 
expressions 

X(m2- n2), X.2mn, A(m” + n”). (2) 

Here h, m, n are whole numbers. 
The formulae (2) are a special case of a well-known identity, the 2-square 

identity 

( mlm2--n,n2)2+( m,n2+mzn1)2=(m2,+n2,)(m2,+n2,). (3) 

*This is an extended version of the Emmy Noether lecture given by invitation of the 

Association of Women in Mathematics at the meeting in San Francisco, January 1981. It was 

supposed to be connected with part of the speaker’s research. 
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It is this identity which plays a vital role and will be the main theme of this 
article. 

The identity follows easily from the multiplication rule of complex num- 
bers: 

(m,+in,)(m,+~in,)=( m,m,--n,n,)+i(m,n,+mzn,>, (4) 

and the multiplicativity of the norm of complex numbers: 

norm(ap) = normanormj3. (5) 

But the identity (3) is also an early example of “composition of sums of 
squares, ” while Equations (4), (5) link (3) to an algebra over the reals with no 
divisors of zero. Hence it is no surprise that the same person who put the 
complex numbers into our work also started on composition of quadratic 
forms. That was Gauss. In the Disquisitiones Arithmeticae, Article 234, he 
says: “So far no one has considered this” (meaning composition). [In a recent 
book by Hlawka it is pointed out that already Vieta (1540-1603) saw a link 
between (3) and complex numbers.] 

Both aspects of (3) will now be discussed. 

2. COMPOSITION OF QUADRATIC FORMS, IN PARTICULAR 
BINARY CASE; CORRESPONDENCE OF IDEAL CLASSES 
MATRIX CLASSES; THE ABSTRACT RING CASE 

THE 
AND 

Composition of two quadratic forms b,(x,, . . . ,a~,,), b,( xl,. . . , x,) is carried 
out by multiplying these forms, obtaining a polynomial of degree 4, but then 
expressing this product as a quadratic form again in a new set of inde 
terminates which are functions of the xi, yk. In the classical case these 
functions are bilinear, but this cannot always be achieved. 

The e-square identity shows that it can be done for b,, b, both sums of 
two squares. A famous theorem of Hurwitz shows that 2,4,8 are the only 
values of rr such that two sums of n squares allow bilinear composition. Recent 
work by Cassels in England and Pfister in Germany extended this to n = 2N if 
also rational composition is permitted. A matrix method introduced by the 
author led to a new composition rule for n = 8 and was extended to n = 16 by 
Eichhom and Zassenhaus. 

of forms in so called binary forms, has received 
particular in this case 

in his History of the Theory of Numbers ZZZ, reports on the flood of 
later work. 
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Dedekind established a correspondence between binary quadratic forms 
of discriminant d and ideals in the quadratic field of discriminant d such that 
the composition of forms corresponds to the multiplication of ideals. The 
correspondence between classes of positive definite forms and narrow ideal 
classes is (1,l). 

Gauss had allowed d to be non-square-free. This leads to the case of ideals 
in suborders of the maximal order for the Dedekind “translation” [see also the 
n =2 case in E. C. Dade, 0. Taussky, and H. Zassenhaus, Math. Ann. 
148:31-64 (1962)]. 

The study of composition of binary forms over abstract rings was initiated 
independently by Kaplansky, Lubelski, Estes, and Butts, taken up later by 
Butts and Dulin, and studied for all rings by M. Kneser via quadratic modules. 
An article by Towber contains a study of all these achievements. There is also 
a paper by Estes and Earnest on composition of lattices in the same genus. 
Returning to the integral case, the connections with classes of matrices in the 
author’s recent work is now mentioned. 

While Dedekind linked form classes with ideal classes, the theorem of 
Latimer and MacDuffee links ideal classes with classes of integral matrices 
and hence brings the correspondence back to the rational integers. 

Two n X n integral matrices A, B belong to the same matrix class if they 
have the same characteristic polynomial f(x), which is assumed manic and 
irreducible (separable would be acceptable as well), and if further 

S’AS = B, (6) 

where 5’ is an integral unimodular matrix. A l-l correspondence between the 
classes of matrices connected with a given f(x) and the ideal classes in Q(o) 
for f(o)=0 was pointed out by Latimer and MacDuffee. It can be described 
by the equation 

(7) 

where (Y i, . . . , an form a Z-basis for an ideal a in the order Z [ a]. 
The following two ideas lead to a new composition procedure for n ~2: 

(1) Let 

(8) 
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where pi,. . . , /3,, form a Z-basis for an ideal b in Z[cw]. Assume that a has an 
inverse a-‘. Then 

where p runs through the ideal a-lb and S,, s runs through all solutions S of 

(6). 
(II) The set S, s can be expressed as a matrix whose entries are integral 

linear forms in two indeterminates. But this matrix can also be obtained as the 
product of two other matrices, one corresponding to a-‘, the other to b, each 
with entries which are integral linear forms in their respective set of two 
indeterminates, so that S A, a appears as a composition of these two matrices 
via bilinear substitutions, derived from matrix multiplication. 

Taking determinants for the three matrices mentioned, composition of 
quadratic forms is carried out. While the connection with ideals in (I) and (II) 
is used to establish the correctness of the result, the composition process can 
then be carried out via systems of linear integral equations. 

3. ALGEBRAS OVER THE REAL NUMBER FIELD WITHOUT 
DIVISORS OF ZERO 

As mentioned in Section 1, the special case of the complex numbers is 
associated with the Bsquare identity (3). But even stranger and unexpected 
applications arise, e.g. the Cauchy-Riemann equations for two functions ui, u2 
of two variables xi, x2 and the process which leads to the Laplace equation 
for ui, ug. This process is of an algebraic nature. Replacing the operators 
a,/axi by xi one obtains 

UIXl - u2x2 = 0, UIXZ + UZXl = 0, (10) 

and then one goes on to 

(11) 

Interpreting these equations for ui, xk as real numbers, one obtains the 
well-known fact that the product of two complex numbers u 1 + iu,, x1 + ix:, 
cannot be zero unless one of the factors is zero. 
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However, the author applied the above argument of hers to generalized 
Cauchy-Riemann equations for n functions of m variables, assuming that they 
satisfy n linear partial differential equations. Assume further that these 
equations are of such a nature that the Laplace equations emerge for all of 
them by suitable combinations when multiplied by linear forms in the 
operators. It was then observed that this would imply the existence of an 
algebra over the reals without divisors of zero. In the meantime it was shown 
(by Bott, Kervaire, Milnor, Adams) that this implies that n is one of the 
numbers 1,2,4,8. For n = 8 such an algebra has to be nonassociative by a 
theorem of Frobenius. This theorem too can be connected with the 2-square 
identity. For (3) implies that the points of the unit sphere will form a group 
under multiplication. E. Cartan had shown that the points of the n-sphere 
x;+ ... + xf = 1 are a group space only for n = 1,2,4. Linking the ndimen- 
sional sphere to algebras over the reals with n basis elements, the author 
re-proved Frobenius’s theorem.’ 

The result concerning generalized Cauchy-Riemann equations was re- 
proved by Stiefel. It also leads to a statement about matrix equations which 
was later rediscovered by combinatorialists. 

4. PYTHAGORAS’ THEOREM VERSUS THE PYTHAGOREAN 
TRIANGLES 

The Pythagorean triangles are a very early example of a problem that 
comes up very frequently. Given a fact that is valid over fields, will it also be 
valid over rings, and if it is not valid over a specific ring, for what cases will it 
be, or alternatively, for what rings will it be valid? A few examples are as 
follows: 

EXAMPLE 1. A quadratic form over the reals can be transformed to 
Za ix: by a substitution of its variables. When is this true for a quadratic form 
over the ring of integers? 

A positive definite real form in n indeterminates can be transformed into a 
sum of n squares of linear forms. But even a binary integral quadratic form 
may need as many as five sums of squares of integral linear forms. Mordell 
showed that for sufficiently large n an integral positive definite quadratic 
form in n indeterminates may not be expressible at all as a sum of integral 
squares. 

‘Frobenius’s proof u5e5 matrices which he derives from bilinear forms and their determi- 

nants. The tenn lnatrix was introduced by Cayley in 18.57. But Frobenius speaks about “systems 

of n2 quantities, arranged into n row5 and n columns.” Other early reproofs of Frobenius’s 

theoreln were given by E. Cartan and by Dickson. 
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EXAMPLE 2. It is known that a matrix with entries from a field can be 
expressed as the product of 2 symmetric matrices with elements from the 
same field. The author then asked the question: what happens if the entries of 
the matrix are rational integers? Can the factors then be chosen integral too? 
She showed that the matrix 

cannot be factored in this way and characterized the 2 X 2 matrices for which 
it is possible. There is a connection there with ideal classes in quadratic fields. 

EXAMPLE 3. In recent years much attention is given to the level (or 
Stufe) of not formally real fields, i.e. the smallest integer n required to express 
- 1 as a sum of n squares in the field. In recent years it was shown that n is a 
power of 2. Now there is quite a group of people working on the levels of 
rings. 

5. THE FACTORIZATION OF m2 + n2 AND OF DETERMINANTS OF 
INTEGRAL MATRICES 

For integral values of m, n one can study the factorization of the sum of 
two squares, not a square itself, into sums of two integral squares, instead of 
the composition-i.e., the question of when 

m2+n2=(m~+nf)(m~+n~), m,, ni #O. (12) 

The latter condition is automatically fulfilled if m2 + n2 has a square factor 
coming from a Pythagorean triangle. Using integers in Q(i), the so-called 
Gaussian integers, the above factorization is equivalent with the following 
statement: Let m2 + n2 = a b, a, bE Z and both sums of two squares. Then 
there exist Gaussian numbers (Y, j3 such that norm (Y = a, norm p = b, and 
a/3 = m + in. 

An analogous statement is correct for sums of 4 squares using integral 
quatemions: either the Lipschitz quatemions, which have integral coeffi- 
cients, or the Hurwitz quatemions. No condition is then required on the 
factors a, b. 

An analogous statement is further correct for a large class of cases of 8 
squares, connected with the various definitions of integral Cayley numbers 
(for these definitions see Estes and Pall). The case of Cayley numbers with 
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integral coefficients was studied by Benneton, and later again by Pall and the ’ 
author with a different method; the other rings of integer Cayley numbers 
were treated by Feaux and Hardy. 

There are other examples where the factorization of “norms” implies the 
factorization of the elements coming from a system with multiplication rule 
and multiplicative “‘norm.” This applies particularly to integral matrices and 
their determinants. For matrices with entries in a field it is a trivial observa- 
tion that det A = TS #0 implies A = B. C where det B = r, det C = s. The 
same can be shown to be true for matrices with entries in Z, via the Smith 
normal form. However, the same is not true for arbitrary rings. Recently Estes 
and Matijevic characterized a class of rings for which it holds. 

Another example comes from integral circulants, or more generally in- 
tegral group matrices, and can also be formulated as a problem concerning 
the integral group ring. The following question was posed by the author: 
When can an integral circulant C with det C = TS # 0 be expressed as a 
product of integral circulants C,, C, with determinants r, s? This question is 
even harder, for there is not always an integral n X n circulant C with a given 
det C. The problem was studied by M. Newman, by Newman and Mahoney, 
in the thesis of Mahoney, and by Tai, Zong Duo and Feng, Xu Ning, 
(unpublished). 

6. SOME SPECIAL RESULTS CONCERNING PYTHAGOREAN 
TRIANGLES 

It is futile to attempt a survey of the triangles. This report aims to 
demonstrate that large areas of research could have been motivated by them, 
but there is no claim that they actually were. 

From the more recent work concerning the triangles themselves a small 
sample is now given: 

(1) A nwdem prooffir the formulae (2) is given by Taussky [62]. This 
could have been obtained by Emmy Noether and was quite possibly known to 
her. It uses Galois cohomology, namely Hilbert’s Theorem 90. 

(2) The maximum real subfield of the cyclotomic field Q ({,), {, a p-th 
root of 1, p a prime. The field Q(lp) is an extension of degree 2 of its 
maximum real subfield. The author had found a condition which ensures that 
a p-dimensional integral unimodular positive definite circulant C can be 
expressed as C,C; with C, again an integral circulant. The condition is that 
the characteristic roots of C are norms from Q<lp) to Q(lp + &,). The case 
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when these norms are merely squares in the real field is of special signifi- 
cance. This could be a Pythagorean triple situation. A thesis by D. Davis is 
related to this problem. Norms from quadratic fields other than Q(i) can also 

be squares, e.g. 7’ - 10 X 2’ =3”. 
(3) An application to imaginary quadratic number fields whose class 

number is divisible by 16. A famed result of Gauss concerns the connection 
between the number of representations of an integer m as a sum of three 
squares and the ideal class number of @J-m) (expressed by Gauss in the 
language of quadratic forms). More recently this fact was re-proved by 
Venkov using the tools of Hurwitz quatemions (see also a more modern 
version by H. P. Rehm). This technique was employed by Hanlon and Morton 
to the case of a prime which is a sum of two squares one of which comes from 
a Pythagorean triangle. 

(4) The equation a2 + b2 = mc’, m square free The Pythagorean trian- 
gles are a special case of this. It leads to the norm equations 

a’- &= -b2 

and the representation of - 1 as a norm in Q(e). 
(5) A 3 X3 matrix which transforms arbitrary Pythagorean triples into 

other Pythagorean triples. 
(6) A link between Pythagorean triangles and celestial mechanics. 

Changing the subject completely, a link between the formulae (2) and 
celestial mechanics, proved by Levi-Civita and used by Stiefel and Scheifele, 
Springer 1971, was reported to the author by Stiefel: The expressions 

x1 = u; - u;, x2 =2uius, T = u4 + U2” (13) 

define a mapping from the ur, u2 plane to the xi, x2 plane with r = \i’~; + ~2” 
the distance from 0 to (xi, 3~s). The following can then be shown: the line 1 
given by ui = c, c a constant, is mapped on to a parabola, and if (ui, u2) 
moves, in a certain time scale, with constant speed along 1, then (xi, x2) 
moves in a parabolic path according to the Kepler laws. 

(7) Finally, studying the mapping (13), Hlawka made an interesting 
application, obtaining an approximation of right angled triangles by the 
Pythagorean triangles. 
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